Face parsing infers a pixel-wise label to each facial component, which has drawn much attention recently. Previous methods have shown their success in face parsing, which however overlook the correlation among facial components. As a matter of fact, the component-wise relationship is a critical clue in discriminating ambiguous pixels in facial area. To address this issue, we propose adaptive graph representation learning and reasoning over facial components, aiming to learn representative vertices that describe each component, exploit the component-wise relationship and thereby produce accurate parsing results against ambiguity. In particular, we devise an adaptive and differentiable graph abstraction method to represent the components on a graph via pixel-to-vertex projection under the initial condition of a predicted parsing map, where pixel features within a certain facial region are aggregated onto a vertex. Further, we explicitly incorporate the image edge as a prior in the model, which helps to discriminate edge and non-edge pixels during the projection, thus leading to refined parsing results along the edges. Then, our model learns and reasons over the relations among components by propagating information across vertices on the graph. Finally, the refined vertex features are projected back to pixel grids for the prediction of the final parsing map. To train our model, we propose a discriminative loss to penalize small distances between vertices in the feature space, which leads to distinct vertices with strong semantics. Experimental results show the superior performance of the proposed model on multiple face parsing datasets, along with the validation on the human parsing task to demonstrate the generalizability of our model.


翻译:面部剖面部分的像素标签最近引起人们很多注意。 以往的方法在面部剖析中显示了它们的成功, 但是却忽略了面部各组成部分之间的关联。 事实上, 构件与面部关系是区别面部区域模糊像素的关键线索。 为了解决这个问题, 我们提议对面部部分进行适应性图形代表学习和推理, 目的是学习描述每个组成部分的有代表性的脊椎, 利用构件- 关系, 从而得出准确的对模糊性进行分析的结果。 特别是, 我们设计了一种适应性和不同的图形抽象抽象抽象化方法, 在预测的面部剖面图的初始状态下通过像- 向上投影投影来代表图表中的各组成部分。 某些面部的像性能被聚合到一个脊椎。 此外, 我们明确将图像边缘作为模型的前一个前端, 这有助于在预测期间区分边缘和非对等像的像, 从而在边缘对结果进行精细化。 然后, 我们的模型在图中通过等向距离的直径的图像的表面, 将显示和直径直径的图像的直径关系, 将显示为直径的图像的图像的图像的精度, 将显示到最后显示到方向的图像的曲线的精度 。 。 将显示到直判变变的图的图的精度 。

0
下载
关闭预览

相关内容

Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
14+阅读 · 2019年9月11日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
相关论文
Top
微信扫码咨询专知VIP会员