Various fonts give different impressions, such as legible, rough, and comic-text.This paper aims to analyze the correlation between the local shapes, or parts, and the impression of fonts. By focusing on local shapes instead of the whole letter shape, we can realize letter-shape independent and more general analysis. The analysis is performed by newly combining SIFT and DeepSets, to extract an arbitrary number of essential parts from a particular font and aggregate them to infer the font impressions by nonlinear regression. Our qualitative and quantitative analyses prove that (1)fonts with similar parts have similar impressions, (2)many impressions, such as legible and rough, largely depend on specific parts, (3)several impressions are very irrelevant to parts.


翻译:各种字体给人以不同的印象, 如可读、 粗略和漫画文本。 本文旨在分析本地形状或部件与字体的印象之间的相互关系。 通过关注本地形状而不是整个字母形状, 我们可以实现字母形状独立和更全面的分析。 分析由新合并的SIFT 和 DeepSet 进行, 以便从特定的字体中任意提取一些基本部件, 并把它们汇总起来, 通过非线性回归推断字体的形状。 我们的定性和定量分析证明:(1) 具有类似部分的硬体有相似的印象, (2) 多种印象, 如可读和粗糙, 基本上取决于特定部分, (3) 不同部分的印象非常不相干 。

0
下载
关闭预览

相关内容

专知会员服务
79+阅读 · 2021年5月4日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
3+阅读 · 2020年7月16日
A Compact Embedding for Facial Expression Similarity
VIP会员
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员