Helical acquisition geometry is the most common geometry used in computed tomography (CT) scanners for medical imaging. We adapt the invertible Learned Primal-Dual (iLPD) deep neural network architecture so that it can be applied to helical 3D CT reconstruction. We achieve this by splitting the geometry and the data in parts that fit the memory and by splitting images into corresponding sub-volumes. The architecture can be applied to images different in size along the rotation axis. We perform the experiments on tomographic data simulated from realistic helical geometries.
翻译:热获取几何是用于医疗成像的计算断层扫描仪中最常用的几何测量方法。 我们调整了不可倒置的原始光学深神经网络结构, 以便将其应用于三维热电解网络重建。 我们通过将符合内存的几何和数据部分分开,并将图像分解成相应的子体积来实现这一点。 该结构可以应用到旋转轴上不同大小的图像上。 我们用现实的太阳形地理图谱模拟的图象数据进行实验。