The era of big data has witnessed an increasing availability of multiple data sources for statistical analyses. We consider estimation of causal effects combining big main data with unmeasured confounders and smaller validation data with supplementary information on these confounders. Under the unconfoundedness assumption with completely observed confounders, the smaller validation data allow for constructing consistent estimators for causal effects, but the big main data can only give error-prone estimators in general. However, by leveraging the information in the big main data in a principled way, we can improve the estimation efficiencies yet preserve the consistencies of the initial estimators based solely on the validation data. Our framework applies to asymptotically normal estimators, including the commonly-used regression imputation, weighting, and matching estimators, and does not require a correct specification of the model relating the unmeasured confounders to the observed variables. We also propose appropriate bootstrap procedures, which makes our method straightforward to implement using software routines for existing estimators.


翻译:在海量数据时代,为统计分析提供了越来越多的多种数据来源。我们考虑将海量主要数据与未经测量的混乱者相结合的因果效应估计,而将较小的验证数据与这些混乱者的补充信息结合起来。在与完全观察到的混乱者一起进行的无根据假设假设下,较小的验证数据可以构建一致的因果关系估计,但海量数据一般只能提供容易出错的估计数据。然而,通过以有原则的方式利用海量主要数据中的信息,我们可以提高估算效率,但只能根据验证数据来保存初始估计者的构成。我们的框架适用于非偶然的正常估计数据,包括常用的回归估计、加权和匹配估计者,并不要求正确规范与所观察到的变量有关的非计量者相连接的模型。我们还提出了适当的测靴程序,使我们使用软件常规执行现有估量者的方法更为简单。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员