Molecular property prediction is a fundamental task in the drug and material industries. Physically, the properties of a molecule are determined by its own electronic structure, which can be exactly described by the Schr\"odinger equation. However, solving the Schr\"odinger equation for most molecules is extremely challenging due to long-range interactions in the behavior of a quantum many-body system. While deep learning methods have proven to be effective in molecular property prediction, we design a novel method, namely GEM-2, which comprehensively considers both the long-range and many-body interactions in molecules. GEM-2 consists of two interacted tracks: an atom-level track modeling both the local and global correlation between any two atoms, and a pair-level track modeling the correlation between all atom pairs, which embed information between any 3 or 4 atoms. Extensive experiments demonstrated the superiority of GEM-2 over multiple baseline methods in quantum chemistry and drug discovery tasks.
翻译:分子属性预测是药物和材料行业的一项基本任务。从物理上看,分子的特性是由其自身的电子结构决定的,这种结构可以由Schr\'odinger方程来精确描述。然而,解决大多数分子的Schr\'odinger方程由于量子多体系统行为中的远距离相互作用而具有极大的挑战性。虽然深层次的学习方法已证明在分子属性预测方面是有效的,但我们设计了一种新型方法,即GEM-2,该方法综合考虑分子中的远程和多体相互作用。GEM-2由两个交互轨道组成:一个原子级轨道,在任何两个原子之间同时进行局部和全球的模拟,以及一个对等轨道,将所有原子对子的相互关系建模,将信息嵌入任何3个或4个原子之间的信息。广泛的实验表明GEM-2在量子化学和药物发现任务中的多种基线方法之上。