Feature matching is a challenging computer vision task that involves finding correspondences between two images of a 3D scene. In this paper we consider the dense approach instead of the more common sparse paradigm, thus striving to find all correspondences. Perhaps counter-intuitively, dense methods have previously shown inferior performance to their sparse and semi-sparse counterparts for estimation of two-view geometry. This changes with our novel dense method, which outperforms both dense and sparse methods on geometry estimation. The novelty is threefold: First, we propose a kernel regression global matcher. Secondly, we propose warp refinement through stacked feature maps and depthwise convolution kernels. Thirdly, we propose learning dense confidence through consistent depth and a balanced sampling approach for dense confidence maps. Through extensive experiments we confirm that our proposed dense method, \textbf{D}ense \textbf{K}ernelized Feature \textbf{M}atching, sets a new state-of-the-art on multiple geometry estimation benchmarks. In particular, we achieve an improvement on MegaDepth-1500 of +4.9 and +8.9 AUC$@5^{\circ}$ compared to the best previous sparse method and dense method respectively. Our code is provided at https://github.com/Parskatt/dkm
翻译:匹配功能是一个具有挑战性的计算机视野任务, 涉及到在三维场景的两张图像之间寻找对应之处。 在本文中, 我们考虑的是密集的方法, 而不是更常见的稀疏模式, 从而努力寻找所有对应点。 也许反直觉的、 密集的方法以前显示的性能低于其稀疏和半粗的对应方, 以估计双视几何形。 这种变化与我们的新颖的密集方法相比, 远高于密度和稀疏的几何估计方法。 新颖的是三重 : 第一, 我们提出一个新的全球内核回归匹配器。 第二, 我们提议通过堆叠的地貌图和深度的熔化内核来改进。 第三, 我们提议通过一致的深度和均衡的抽样方法来学习浓厚的信心。 通过广泛的实验, 我们确认我们提议的密度方法,\ textbf{Dense\\ k} 和textbf{M}M} 匹配, 设置了一套关于多重几何估计基准的新的状态技术。 我们特别建议通过堆积的地图图图图图图图图图图图图和深层的精密库进行改进。 第三, 我们建议通过一致的MDGDDDDD- 1500/ sqr_Q_Q_Q_Q_ drocroc_ drocalxxx