The paper motivates high dimensional smoothing with penalized splines and its numerical calculation in an efficient way. If smoothing is carried out over three or more covariates the classical tensor product spline bases explode in their dimension bringing the estimation to its numerical limits. A recent approach by Siebenborn and Wagner(2019) circumvents storage expensive implementations by proposing matrix-free calculations which allows to smooth over several covariates. We extend their approach here by linking penalized smoothing and its Bayesian formulation as mixed model which provides a matrix-free calculation of the smoothing parameter to avoid the use of high-computational cross validation. Further, we show how to extend the ideas towards generalized regression models. The extended approach is applied to remote sensing satellite data in combination with spatial smoothing.


翻译:本文以有效的方式鼓励高维平滑,使用受罚的样条和数字计算。如果平滑使用三个或三个以上,则古典高压产品样条基在三个或三个以上的共变中爆炸,使估计达到其数量限度。Siebenborn和Wagner(2019年)最近采取的办法绕过存储费用昂贵的操作,提出无基数计算,使若干共变平滑。我们通过将受罚的平滑和巴耶斯式配方作为混合模型,提供平滑参数的无基数计算,以避免使用高分子截取交叉验证。此外,我们展示了如何将想法推广到普遍回归模型。扩大的办法适用于遥感卫星数据,同时进行空间平滑。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
已删除
将门创投
3+阅读 · 2019年6月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
3+阅读 · 2019年6月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员