Diagnostic data such as logs and memory dumps from production systems are often shared with development teams to do root cause analysis of system crashes. Invariably such diagnostic data contains sensitive information and sharing it can lead to data leaks. To handle this problem we present Knowledge and Learning-based Adaptable System for Sensitive InFormation Identification and Handling (KLASSIFI) which is an end to end system capable of identifying and redacting sensitive information present in diagnostic data. KLASSIFI is highly customizable, allowing it to be used for various different business use cases by simply changing the configuration. KLASSIFI ensures that the output file is useful by retaining the metadata which is used by various debugging tools. Various optimizations have been done to improve the performance of KLASSIFI. Empirical evaluation of KLASSIFI shows that it is able to process large files (128 GB) in 84 minutes and its performance scales linearly with varying factors. This points to practicability of KLASSIFI


翻译:生产系统的日志和内存倾弃器等诊断性数据往往与开发团队共享,以便对系统崩溃进行根本原因分析,这类诊断性数据通常包含敏感信息,共享可能导致数据泄漏。为处理这一问题,我们推出了基于知识和学习的敏感化识别和处理可调适系统(KLASSIFI),这是能够识别和重编诊断数据中存在的敏感信息的终端系统(KLASSIFI)的终结系统。 KOSSSIFI具有高度自定义性,仅通过改变配置就可以用于不同业务使用案例。 KOSSSIFI确保输出文件有用,保留各种调试工具所使用的元数据。 已经做了各种优化,以改善 KASSIFI 的性能。 对 KLASSIFI 的实证评估表明,它能够在84分钟内处理大型文件(128GB),其性能尺度也以不同因素线性化。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员