We present SocialGym 2, a multi-agent navigation simulator for social robot research. Our simulator models multiple autonomous agents, replicating real-world dynamics in complex environments, including doorways, hallways, intersections, and roundabouts. Unlike traditional simulators that concentrate on single robots with basic kinematic constraints in open spaces, SocialGym 2 employs multi-agent reinforcement learning (MARL) to develop optimal navigation policies for multiple robots with diverse, dynamic constraints in complex environments. Built on the PettingZoo MARL library and Stable Baselines3 API, SocialGym 2 offers an accessible python interface that integrates with a navigation stack through ROS messaging. SocialGym 2 can be easily installed and is packaged in a docker container, and it provides the capability to swap and evaluate different MARL algorithms, as well as customize observation and reward functions. We also provide scripts to allow users to create their own environments and have conducted benchmarks using various social navigation algorithms, reporting a broad range of social navigation metrics. Projected hosted at: https://amrl.cs.utexas.edu/social_gym/index.html
翻译:我们提出了社交机器人研究的多试剂导航模拟器。我们的模拟器模拟器模型多自主代理器,在复杂的环境中复制真实世界动态,包括门道、走廊、十字路口和环形。不同于传统的模拟器,侧重于在开放空间有基本运动限制的单体机器人,ScienceGym 2采用多试剂强化学习(MARL),为在复杂环境中有多种、动态制约的多机器人制定最佳导航政策。在PettingZoo MARL图书馆和稳定基线3 API, SociGym 2提供无障碍的python界面,通过 ROS 信息与导航堆融合。社交Gym 2可以很容易地安装,包装在一个嵌入容器中,它提供交换和评价不同的MARL算法的能力,以及定制观测和奖励功能。我们还提供脚本,使用户能够创造自己的环境,并使用各种社会导航算法进行基准,报告广泛的社会导航测量指标。预计的地址是: https://slidexstrual.sstrual_stragym.cl.</s>