We propose an accurate and lightweight convolutional neural network for stereo estimation with depth completion. We name this method fully-convolutional deformable similarity network with depth completion (FCDSN-DC). This method extends FC-DCNN by improving the feature extractor, adding a network structure for training highly accurate similarity functions and a network structure for filling inconsistent disparity estimates. The whole method consists of three parts. The first part consists of fully-convolutional densely connected layers that computes expressive features of rectified image pairs. The second part of our network learns highly accurate similarity functions between this learned features. It consists of densely-connected convolution layers with a deformable convolution block at the end to further improve the accuracy of the results. After this step an initial disparity map is created and the left-right consistency check is performed in order to remove inconsistent points. The last part of the network then uses this input together with the corresponding left RGB image in order to train a network that fills in the missing measurements. Consistent depth estimations are gathered around invalid points and are parsed together with the RGB points into a shallow CNN network structure in order to recover the missing values. We evaluate our method on challenging real world indoor and outdoor scenes, in particular Middlebury, KITTI and ETH3D were it produces competitive results. We furthermore show that this method generalizes well and is well suited for many applications without the need of further training. The code of our full framework is available at: https://github.com/thedodo/FCDSN-DC
翻译:我们提出一个精确和轻量级的神经神经神经网络,以进行立体估计并完成深度。我们给出了这一方法的名称。我们给出了该方法的完全进化变异的相似网络,并完成了深度的完成(FCDSN-DCDC)。这种方法通过改进地貌提取器扩展了FC-DCNN。增加了一个培训高度精确的相似功能和网络结构的网络结构,以填补不一致的估计数。整个方法由三个部分组成。第一部分由完全进化的、密集的、可计算纠正图像配对的直观特征的动态连接层组成。我们网络的第二部分学习了这些已学特征之间的高度精确相似功能。它由连接的、具有可变化的室内变异变相层组成,最后一部分是用来培训非常差的网络结构。 3 在此步骤之后,创建了一个初步差异图和左偏右的网络结构,以便消除不一致的点。 网络最后一部分使用这种输入与左边的 RGB 图像,以便培训一个能够填补缺失的网络。 一致的深度估计是围绕无效点收集的,并且与 RGBD的室内变相连接的相点一起与RGB的室内变异的系统应用, 3,我们在深度框架的深度框架的深度结构中要恢复了我们在深度的深度的深度分析的深度的深度结构的深度结构中, 。我们在深度的深度的深度的深度框架中要在深度的深度的深度, 。我们在深度的深度的深度的深度结构的深度结构的深度结构的深度结构的深度是用来在深度结构中, 。