The drastic increase of JavaScript exploitation attacks has led to a strong interest in developing techniques to enable malicious JavaScript analysis. Existing analysis tech- niques fall into two general categories: static analysis and dynamic analysis. Static analysis tends to produce inaccurate results (both false positive and false negative) and is vulnerable to a wide series of obfuscation techniques. Thus, dynamic analysis is constantly gaining popularity for exposing the typical features of malicious JavaScript. However, existing dynamic analysis techniques possess limitations such as limited code coverage and incomplete environment setup, leaving a broad attack surface for evading the detection. To overcome these limitations, we present the design and implementation of a novel JavaScript forced execution engine named JSForce which drives an arbitrary JavaScript snippet to execute along different paths without any input or environment setup. We evaluate JSForce using 220,587 HTML and 23,509 PDF real- world samples. Experimental results show that by adopting our forced execution engine, the malicious JavaScript detection rate can be substantially boosted by 206.29% using same detection policy without any noticeable false positive increase. We also make JSForce publicly available as an online service and will release the source code to the security community upon the acceptance for publication.


翻译:JavaScript 开发攻击的急剧增加导致人们强烈关注开发技术,以便能够进行恶意 JavaScript 分析。现有的分析技术芯片可分为两大类:静态分析和动态分析。静态分析往往产生不准确的结果(假正反反反反反反),容易受到一系列令人迷惑的技术的影响。因此,动态分析在暴露恶意JavaScript 的典型特征方面越来越受欢迎。然而,现有的动态分析技术具有局限性,例如代码覆盖范围有限,环境设置不全,留下一个广泛的攻击面以躲避探测。为了克服这些限制,我们提出设计和实施名为 JavaScript 的新型强迫处决引擎JusForce 的设计和实施过程不准确( JavaScript 片片段的设计和实施过程) 。我们用220,587 HTML 和23,509 PDF 真实的世界样本来评估JS Force 。实验结果显示,通过我们的强制处决引擎,恶意JavaScript 检测率率可以大大提高206.2.9% 使用相同的检测政策,使用相同的检测能力,使用相同的检测政策,从而将在线发布。我们。我们的网站将公开提供。在网上版本。

0
下载
关闭预览

相关内容

JavaScript 是弱类型的动态脚本语言,支持多种编程范式,包括面向对象和函数式编程。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Arxiv
10+阅读 · 2020年4月5日
Anomalous Instance Detection in Deep Learning: A Survey
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
6+阅读 · 2018年2月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员