In regional economics research, a problem of interest is to detect similarities between regions, and estimate their shared coefficients in economics models. In this article, we propose a mixture of finite mixtures (MFM) clustered regression model with auxiliary covariates that account for similarities in demographic or economic characteristics over a spatial domain. Our Bayesian construction provides both inference for number of clusters and clustering configurations, and estimation for parameters for each cluster. Empirical performance of the proposed model is illustrated through simulation experiments, and further applied to a study of influential factors for monthly housing cost in Georgia.
翻译:在区域经济学研究中,一个令人感兴趣的问题是发现各区域之间的相似之处,并估计它们在经济学模型中共有的系数。在本条中,我们建议采用一个结合的有限混合物(MFM)集成回归模型,配有辅助共变体,以说明空间领域人口或经济特征的相似性。我们的巴伊西亚建筑为集群和集群配置的数量提供了推论,并对每个集群的参数进行了估计。通过模拟实验来说明拟议模型的经验性表现,并进一步用于研究格鲁吉亚月度住房成本的有影响因素。