Interpretability of learning algorithms is crucial for applications involving critical decisions, and variable importance is one of the main interpretation tools. Shapley effects are now widely used to interpret both tree ensembles and neural networks, as they can efficiently handle dependence and interactions in the data, as opposed to most other variable importance measures. However, estimating Shapley effects is a challenging task, because of the computational complexity and the conditional expectation estimates. Accordingly, existing Shapley algorithms have flaws: a costly running time, or a bias when input variables are dependent. Therefore, we introduce SHAFF, SHApley eFfects via random Forests, a fast and accurate Shapley effect estimate, even when input variables are dependent. We show SHAFF efficiency through both a theoretical analysis of its consistency, and the practical performance improvements over competitors with extensive experiments. An implementation of SHAFF in C++ and R is available online.


翻译:学习算法的可解释性对于涉及关键决定的应用至关重要,可变重要性是主要解释工具之一。现在,对树群和神经网络的解释广泛使用沙粒效应,因为它们能够有效地处理数据中的依赖性和相互作用,而不是其他大多数可变重要性措施。然而,估计沙粒效应是一项艰巨的任务,因为计算的复杂性和有条件的预期估计。因此,现有的沙粒算法存在缺陷:运行时间昂贵,或者在投入变量依赖时存在偏差。因此,我们引入了SHAFF, 随机森林的SHAPley e Fefects, 快速和准确的沙粒效应估计,即使投入变量依赖。我们通过对其一致性进行理论分析,并通过广泛试验对竞争者的实际性能改进,展示SHAFF的效率。 SHAFF在C++和R中的实施可在网上查阅。

0
下载
关闭预览

相关内容

专知会员服务
114+阅读 · 2021年7月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
12+阅读 · 2018年6月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月11日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
114+阅读 · 2021年7月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
12+阅读 · 2018年6月25日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员