We consider the problem of determining the manifold $n$-widths of Sobolev and Besov spaces with error measured in the $L_p$-norm. The manifold widths control how efficiently these spaces can be approximated by general non-linear parametric methods with the restriction that the parameter selection and parameterization maps must be continuous. Existing upper and lower bounds only match when the Sobolev or Besov smoothness index $q$ satisfies $q\leq p$ or $1 \leq p \leq 2$. We close this gap and obtain sharp lower bounds for all $1 \leq p,q \leq \infty$ for which a compact embedding holds. A key part of our analysis is to determine the exact value of the manifold widths of finite dimensional $\ell^M_q$-balls in the $\ell_p$-norm when $p\leq q$, which complements existing results that handle the case $q\leq p$. Our results show that the Bernstein widths, which are typically used to lower bound the manifold widths, decay asymptotically faster than the manifold widths in many cases.
翻译:暂无翻译