This work deals with the problem of gathering $n$ oblivious mobile entities, called robots, at a point (not known beforehand) placed on an infinite triangular grid. The robots are considered to be myopic, i.e., robots have limited visibility. Earlier works of gathering mostly considered the robots either on a plane or on a circle or on a rectangular grid under both full and limited visibility. In the triangular grid, there are two works to the best of our knowledge. The first one is by Cicerone et al. on arbitrary pattern formation where full visibility is considered. The other one by Shibata et al. which considers seven robots with 2- hop visibility that form a hexagon with one robot in the center of the hexagon in a collision-less environment under a fully synchronous scheduler . In this work, we first show that gathering on a triangular grid with 1-hop vision of robots is not possible even under a fully synchronous scheduler if the robots do not agree on any axis. So one axis agreement has been considered in this work (i.e., the robots agree on a direction and its orientation). We have also shown that the lower bound for time is $\Omega(n)$ epochs when $n$ number of robots are gathering on an infinite triangular grid. An algorithm is then presented where a swarm of $n$ number of robots with 1-hop visibility can gather within $O(n)$ epochs under a semi-synchronous scheduler. So the algorithm presented here is time optimal.
翻译:这项工作涉及在无限三角网格上( 事先不为人知的) 某个点( ) 收集被忽略的移动实体( 叫做机器人) 的问题。 机器人被认为是近视的, 也就是说, 机器人的可见度有限。 早期的收集工作大多认为机器人在飞机上或在圆圈上或在矩形网中, 完全和有限的可见度之下都是机器人。 在三角网格中, 有两件事情是我们最了解的。 首先是Cicerone et al. 在考虑充分可见度的任意模式形成上。 另一个是Shibata 等人, 认为具有2位高可见度的七位机器人, 在完全同步的调度器下, 在无碰撞的环境中与一个机器人形成六角形。 在这项工作中, 我们首先显示, 在一个带有1位高视力的三角网格上, 即使是在一个完全同步的调度器下, 如果机器人无法在任何轴上达成一致( 。 所以在这个工作里, 一个轴协定是( i. i. i. 美元, robals) 在一个固定的轨道上显示一个方向, 在1 robal robal rocal rocal rocal rocal room rolal rol) 中显示一个方向。