Matrix completion has attracted attention in many fields, including statistics, applied mathematics, and electrical engineering. Most of the works focus on the independent sampling models under which the observed entries are sampled independently. Motivated by applications in the integration of knowledge graphs derived from multi-source biomedical data such as those from Electronic Health Records (EHR) and biomedical text, we propose the {\bf B}lock-wise {\bf O}verlapping {\bf N}oisy {\bf M}atrix {\bf I}ntegration (BONMI) to treat blockwise missingness of symmetric matrices representing relatedness between entity pairs. Our idea is to exploit the orthogonal Procrustes problem to align the eigenspace of the two sub-matrices, then complete the missing blocks by the inner product of the two low-rank components. Besides, we prove the statistical rate for the eigenspace of the underlying matrix, which is comparable to the rate under the independently missing assumption. Simulation studies show that the method performs well under a variety of configurations. In the real data analysis, the method is applied to two tasks: (i) the integrating of several point-wise mutual information matrices built by English EHR and Chinese medical text data, and (ii) the machine translation between English and Chinese medical concepts. Our method shows an advantage over existing methods.


翻译:在许多领域,包括统计、应用数学和电气工程领域,矩阵的完成吸引了人们的注意。大部分工作侧重于独立抽样模型,根据这些模型对观察到的条目进行独立抽样。我们的想法是利用从电子健康记录(EHR)和生物医学文本等多源生物医学数据产生的知识图集集集集应用电子健康记录(EHR)和生物医学文本产生的知识图集,我们建议使用 {bfB}lock-wise {bf witch-with {bf O}verplashing {bouroisy {bf atrixy {bf I}contrigation(BONMI) 来处理代表实体对对口关系的各种相异的对称矩阵缺失。我们的想法是利用两个子体的正方位质质质质矩阵问题来调整两个子体系的机体空间,然后用两个低级部件的内产体完成缺失的块块。此外,我们证明了基础矩阵的统计率,这与独立缺失假设下的速率相当。模拟研究表明,该方法在多种组合下运行方法都很好。在多种组合下。在中国医学概念中。在实际数据分析中,一种机器中,一种数据转换中,一种方法是用于两种方法,用两种方法。在英语和一种方法对正文的翻译。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
“CVPR 2020 接受论文列表 1470篇论文都在这了
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
6+阅读 · 2019年11月14日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员