Pairwise comparison matrices are increasingly used in settings where some pairs are missing. However, there exist few inconsistency indices for similar incomplete data sets and no reasonable measure has an associated threshold. This paper generalises the famous rule of thumb for the acceptable level of inconsistency, proposed by Saaty, to incomplete pairwise comparison matrices. The extension is based on choosing the missing elements such that the maximal eigenvalue of the incomplete matrix is minimised. Consequently, the well-established values of the random index cannot be adopted: the inconsistency of random matrices is found to be the function of matrix size and the number of missing elements, with a nearly linear dependence in the case of the latter variable. Our results can be directly built into decision-making software and used by practitioners as a statistical criterion for accepting or rejecting an incomplete pairwise comparison matrix.


翻译:在缺少一些配对的环境下,越来越多地使用Pairwise比较矩阵;然而,类似的不完整数据集的不一致指数很少,没有合理的衡量标准,因此没有相关的阈值;本文概括了Saaty提出的可接受的不一致程度的著名拇指规则,将之归纳为不完全对等比较矩阵;扩展的根据是选择缺失的元素,以尽可能减少不完整矩阵的最大值;因此,不可能采用随机指数的既定值:随机矩阵的不一致性被认为是矩阵大小和缺失元素数量的功能,在后一种变量中几乎是线性依赖性;我们的结果可以直接纳入决策软件,供从业人员用作接受或拒绝不完整对等对比矩阵的统计标准。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
【白皮书】“物联网+区块链”应用与发展白皮书-2019
专知会员服务
94+阅读 · 2019年11月13日
度量学习中的pair-based loss
极市平台
65+阅读 · 2019年7月17日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2022年2月7日
Arxiv
0+阅读 · 2022年2月7日
Learning with Neighbor Consistency for Noisy Labels
Arxiv
0+阅读 · 2022年2月4日
VIP会员
相关资讯
度量学习中的pair-based loss
极市平台
65+阅读 · 2019年7月17日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员