The unpaired training can be the only option available for fast deep learning-based ghost imaging, where obtaining a high signal-to-noise ratio (SNR) image copy of each low SNR ghost image could be practically time-consuming and challenging. This paper explores the capabilities of deep learning to leverage computational ghost imaging when there is a lack of paired training images. The deep learning approach proposed here enables fast ghost imaging through reconstruction of high SNR images from faint and hastily shot ghost images using a constrained Wasserstein generative adversarial network. In the proposed approach, the objective function is regularized to enforce the generation of faithful and relevant high SNR images to the ghost copies. This regularization measures the distance between reconstructed images and the faint ghost images in a low-noise manifold generated by a shadow network. The performance of the constrained network is shown to be particularly important for ghost images with low SNR. The proposed pipeline is able to reconstruct high-quality images from the ghost images with SNR values not necessarily equal to the SNR of the training set.


翻译:未受重视的培训可能是快速深层学习的幽灵成像的唯一选择,在这种成像中,获得每个低的SNR幽灵图像的高度信号到噪音比例(SNR)图像拷贝可能实际上耗时且具有挑战性。本文件探讨了在缺乏配对培训图像时利用计算幽灵成像的深层学习能力。此处提议的深层次学习方法通过利用限制的Wasserstein基因对抗网络重建高分辨率的SNR图像,使高分辨率的幽灵成像能够快速进行幽灵成像。在拟议办法中,目标功能被常规化,将忠实和相关的高SNR图像生成到幽灵副本。这一正规化功能测量了重建后的图像与影子网络生成的低噪音的微幽灵成像之间的距离。限制网络的性能对低分辨率SNR的幽灵图像显得特别重要。拟议的管道能够从幽灵图像中重建高品质图像,而SNR的价值不一定等同于培训组的SNR。

1
下载
关闭预览

相关内容

最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年2月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月1日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年2月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员