High dynamic range (HDR) imaging from multiple low dynamic range (LDR) images has been suffering from ghosting artifacts caused by scene and objects motion. Existing methods, such as optical flow based and end-to-end deep learning based solutions, are error-prone either in detail restoration or ghosting artifacts removal. Comprehensive empirical evidence shows that ghosting artifacts caused by large foreground motion are mainly low-frequency signals and the details are mainly high-frequency signals. In this work, we propose a novel frequency-guided end-to-end deep neural network (FHDRNet) to conduct HDR fusion in the frequency domain, and Discrete Wavelet Transform (DWT) is used to decompose inputs into different frequency bands. The low-frequency signals are used to avoid specific ghosting artifacts, while the high-frequency signals are used for preserving details. Using a U-Net as the backbone, we propose two novel modules: merging module and frequency-guided upsampling module. The merging module applies the attention mechanism to the low-frequency components to deal with the ghost caused by large foreground motion. The frequency-guided upsampling module reconstructs details from multiple frequency-specific components with rich details. In addition, a new RAW dataset is created for training and evaluating multi-frame HDR imaging algorithms in the RAW domain. Extensive experiments are conducted on public datasets and our RAW dataset, showing that the proposed FHDRNet achieves state-of-the-art performance.
翻译:多低动态范围图像(HDR)的高动态范围成像(HDR)一直受到由场景和物体运动引起的幽灵文物的影响。现有的方法,如光学流基和端到端深学习解决方案,在细节恢复或清除时容易出错。综合经验证据表明,大型前方运动造成的幽灵文物主要是低频信号,细节主要是高频信号。在这项工作中,我们提议建立一个新颖的频率制导端到端深神经网络(FHDRNet),在频率域内进行《人类发展报告》的聚合,而Discrete Wavelet 变换(DWT)等现有方法被用于将输入分解成不同的频率波段。低频信号被用来避免具体的幽灵文物被清除。而高频信号用于保存细节。我们使用U-Net作为主干线,我们提议两个新新模块:合并模块和频率制导向上层的模拟模块。合并模块将注意力应用于低频组件用于处理由大型实地运动引起的幽灵,Discrete WestretNet Tal-deal deal developmental destration the dreal-deal-deal-degraphlistrislal sqmamatial ladaldal ladaldaldaldaldaldald laddaldaldaldaldaldald lad ladddaldddd lad madd ladaldaldaldaldaldaldalddddaldaldaldaldaldaldalddddd maddd maddddddddd madaldaldaldd mad madaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldddddaldaldaldaldaldaldaldald madaldaldaldaldaldald mad madaldaldaldaldaldaldaldaldaldaldaldaldald mas madald mas