This paper proposes an efficient quantum train engine (EQuaTE), a novel tool for quantum machine learning software which plots gradient variances to check whether our quantum neural network (QNN) falls into local minima (called barren plateaus in QNN). This can be realized via dynamic analysis due to undetermined probabilistic qubit states. Furthermore, our EQuaTE is capable for HCI-based visual feedback because software engineers can recognize barren plateaus via visualization; and also modify QNN based on this information.
翻译:本文提出了高效量子列车引擎(EQuaTE),这是量子机学习软件的一种新工具,它设计了梯度差异,以检查我们的量子神经网络(QNN)是否属于本地微型(QNN的“贫瘠高原 ” ) 。 这一点可以通过动态分析实现,因为不确定的概率qubit 状态。 此外,我们的 EQuaTE能够获得基于 HCI 的视觉反馈,因为软件工程师可以通过可视化来识别不育高原;并且也可以根据这些信息修改QNN。