Entities, as important carriers of real-world knowledge, play a key role in many NLP tasks. We focus on incorporating entity knowledge into an encoder-decoder framework for informative text generation. Existing approaches tried to index, retrieve, and read external documents as evidence, but they suffered from a large computational overhead. In this work, we propose an encoder-decoder framework with an entity memory, namely EDMem. The entity knowledge is stored in the memory as latent representations, and the memory is pre-trained on Wikipedia along with encoder-decoder parameters. To precisely generate entity names, we design three decoding methods to constrain entity generation by linking entities in the memory. EDMem is a unified framework that can be used on various entity-intensive question answering and generation tasks. Extensive experimental results show that EDMem outperforms both memory-based auto-encoder models and non-memory encoder-decoder models.
翻译:作为真实世界知识的重要载体,实体在许多NLP任务中发挥着关键作用。我们注重将实体知识纳入信息文本生成的编码器-编码器框架。现有办法试图将外部文件索引、检索和阅读作为证据,但它们却受到巨大的计算间接费用的影响。在这项工作中,我们提议了一个带有实体记忆的编码器-编码器框架,即EDMem。实体知识储存在记忆中,作为潜在表示,记忆与编码器-编码器参数一起在维基百科上预先培训。为了精确生成实体名称,我们设计了三种解码方法,通过将记忆中的实体连接起来来限制实体生成。EDMem是一个可用于各种实体密集问题的回答和生成任务的统一框架。广泛的实验结果显示,EDMem超越了基于记忆的自动编码器模型和非模拟编码器-编码器模式。