Two nonconforming finite element Stokes complexes starting from the conforming Lagrange element and ending with the nonconforming $P_1$-$P_0$ element for the Stokes equation in three dimensions are constructed. And commutative diagrams are also shown by combining nonconforming finite element Stokes complexes and interpolation operators. The lower order $\boldsymbol H(\textrm{grad}\textrm{curl})$-nonconforming finite element only has $14$ degrees of freedom, whose basis functions are explicitly given in terms of the barycentric coordinates. The $\boldsymbol H(\textrm{grad}\textrm{curl})$-nonconforming elements are applied to solve the quad-curl problem, and optimal convergence is derived. By the nonconforming finite element Stokes complexes, the mixed finite element methods of the quad-curl problem are decoupled into two mixed methods of the Maxwell equation and the nonconforming $P_1$-$P_0$ element method for the Stokes equation, based on which a fast solver is discussed. Numerical results are provided to verify the theoretical convergence rates.
翻译:两个不兼容的有限元素 Stokes 复合体从符合的 Lagrange 元素开始,以不符合的 $_ 1美元- $P_ 0美元 元素结尾于不兼容的 $P_ $P_ 0美元 元素在三个维度中构造。 并用不兼容的有限元素 Stokes 复合体和内插操作器来显示通俗图。 低排序 $\boldsymbol H (\ textrrm{grad{ suterrm{cur}) 和不兼容的有限元素只具有14美元的自由度, 其基础功能以粗中心坐标为明确设定。 $\ boldsymbol H (\ textrm{grad{ grad_ textrm{cur}) $的非兼容性元素用于解决四面线性问题, 和最佳趋同性。 未经兼容性元素的混合有限元素方法被分解成两种混合的 Maxwell 方程式, 和未对 $P_ $1 美元 的不兼容性元素进行调制的函数, 正在对一个基化的公式进行快速校正解。