We propose a general algorithm of constructing an extended formulation for any given set of linear constraints with integer coefficients. Our algorithm consists of two phases: first construct a decision diagram $(V,E)$ that somehow represents a given $m \times n$ constraint matrix, and then build an equivalent set of $|E|$ linear constraints over $n+|V|$ variables. That is, the size of the resultant extended formulation depends not explicitly on the number $m$ of the original constraints, but on its decision diagram representation. Therefore, we may significantly reduce the computation time for optimization problems with integer constraint matrices by solving them under the extended formulations, especially when we obtain concise decision diagram representations for the matrices. We can apply our method to $1$-norm regularized hard margin optimization over the binary instance space $\{0,1\}^n$, which can be formulated as a linear programming problem with $m$ constraints with $\{-1,0,1\}$-valued coefficients over $n$ variables, where $m$ is the size of the given sample. Furthermore, introducing slack variables over the edges of the decision diagram, we establish a variant formulation of soft margin optimization. We demonstrate the effectiveness of our extended formulations for integer programming and the $1$-norm regularized soft margin optimization tasks over synthetic and real datasets.
翻译:我们建议为任何一套特定线性限制和整数系数构建一个扩大配方的一般算法。我们的算法由两个阶段组成:首先构建一个决定图$(V,E),以某种方式代表给定的美元乘以n美元约束矩阵,然后建立一套相当于$E$美元线性限制的套件。也就是说,由此而扩大配方的规模并不明确取决于最初限制的金额,而是取决于其决定图的表示方式。因此,我们可能会大幅缩短对整数制约矩阵问题优化的计算时间,办法是在延长配方下解决这些问题,特别是当我们为矩阵获得简明的决定图表表示时。我们可以将我们的方法应用到比二进制空间1美元调低的固定硬差优化1美元,这可以作为线性方案制定问题来制定,以1,0,1美元以上价值的系数超过n美元,这是给定的样本规模。此外,我们还可以通过在决定图表的边缘添加松动变量,特别是当我们为矩阵获取简明决定图时。我们可以将硬差幅优化成一美元,我们为软度制定一个固定的模型的变式模型。