In this paper, we discuss a framework for teaching bimanual manipulation tasks by imitation. To this end, we present a system and algorithms for learning compliant and contact-rich robot behavior from human demonstrations. The presented system combines insights from admittance control and machine learning to extract control policies that can (a) recover from and adapt to a variety of disturbances in time and space, while also (b) effectively leveraging physical contact with the environment. We demonstrate the effectiveness of our approach using a real-world insertion task involving multiple simultaneous contacts between a manipulated object and insertion pegs. We also investigate efficient means of collecting training data for such bimanual settings. To this end, we conduct a human-subject study and analyze the effort and mental demand as reported by the users. Our experiments show that, while harder to provide, the additional force/torque information available in teleoperated demonstrations is crucial for phase estimation and task success. Ultimately, force/torque data substantially improves manipulation robustness, resulting in a 90% success rate in a multipoint insertion task. Code and videos can be found at https://bimanualmanipulation.com/
翻译:在本文中,我们讨论通过模仿来教授双人操作任务的框架。 为此,我们提出了一个从人类演示中学习符合和接触丰富机器人行为的系统和算法。 所介绍的系统将入门控制和机器学习的洞察力结合起来, 以获得控制政策, 这些政策可以(a) 从时间和空间的干扰中恢复并适应各种扰动, 同时(b) 有效地利用与环境的物理接触。 我们用实际世界插入任务, 包括被操纵对象和插入标签之间的多重同时接触, 展示了我们的方法的有效性。 我们还调查了为这种两人演示环境收集培训数据的有效手段。 为此,我们进行了人类科目研究,并分析了用户所报告的努力和精神需求。 我们的实验表明,虽然更难于提供在远程操作演示中可获得的额外力量/ 信息,但对于阶段估计和任务成功至关重要。 最后, 强/ 强/ 数据大大改进了操纵的稳健性, 从而在多点插入任务中取得了90%的成功率。 可以在 https://bimanualmanimpultulate.com/ 中找到代码和视频。