A key goal of unsupervised learning is to go beyond density estimation and sample generation to reveal the structure inherent within observed data. Such structure can be expressed in the pattern of interactions between explanatory latent variables captured through a probabilistic graphical model. Although the learning of structured graphical models has a long history, much recent work in unsupervised modelling has instead emphasised flexible deep-network-based generation, either transforming independent latent generators to model complex data or assuming that distinct observed variables are derived from different latent nodes. Here, we extend the output of amortised variational inference to incorporate structured factors over multiple variables, able to capture the observation-induced posterior dependence between latents that results from "explaining away" and thus allow complex observations to depend on multiple nodes of a structured graph. We show that appropriately parameterised factors can be combined efficiently with variational message passing in elaborate graphical structures. We instantiate the framework based on Gaussian Process Factor Analysis models, and empirically evaluate its improvement over existing methods on synthetic data with known generative processes. We then fit the structured model to high-dimensional neural spiking time-series from the hippocampus of freely moving rodents, demonstrating that the model identifies latent signals that correlate with behavioural covariates.
翻译:未经监督的学习的一个关键目标是超越密度估计和样本生成,以揭示观察到的数据所固有的结构。这种结构可以表现在通过概率图形模型所捕捉的解释性潜在变量之间的相互作用模式中。虽然结构化图形模型的学习历史悠久,但未经监督的建模最近的许多工作却强调灵活的深网络生成,或者将独立的潜在潜在生成器转化为模型复杂的数据,或者假设不同的观测变量来自不同的潜伏节点。在这里,我们扩展摊销变异推论的输出,将结构化因素纳入多个变量,从而能够捕捉到从“脱去”中采集的观测结果的潜值之间观测诱发的后视线依赖性。我们表明,适当参数化的因素可以有效地与变异信息结合,在复杂的图形结构结构结构结构结构结构结构中传递。我们根据高斯进程系数分析模型对框架进行回馈,并用已知的基因化进程对它相对于合成数据现有方法的改进进行实证性评估。我们随后将结构化模型与高度模型的内层导结果模型相匹配,从而能够从一个结构化的恒定的恒定的恒定的恒定的恒定的恒定的恒定的恒定的恒定的恒定性信号。