Bayesian online changepoint detection (BOCPD) (Adams & MacKay, 2007) offers a rigorous and viable way to identity changepoints in complex systems. In this work, we introduce a Stein variational online changepoint detection (SVOCD) method to provide a computationally tractable generalization of BOCPD beyond the exponential family of probability distributions. We integrate the recently developed Stein variational Newton (SVN) method (Detommaso et al., 2018) and BOCPD to offer a full online Bayesian treatment for a large number of situations with significant importance in practice. We apply the resulting method to two challenging and novel applications: Hawkes processes and long short-term memory (LSTM) neural networks. In both cases, we successfully demonstrate the efficacy of our method on real data.
翻译:Bayesian在线变更点检测(BOCPD)(Adams & MacKay,2007年)是复杂系统中身份变更点的严格和可行的方法。在这项工作中,我们采用了斯坦因变换在线变更点检测(SVOCD)方法,为BACPD提供了超出概率分布指数式分布范围的可计算可移植的通用。我们整合了最近开发的Stein变量Newton(SVN)方法(Detommaso等人,2018年)和BOCPD,为大量具有重大实际重要性的情况提供全线在线巴伊西亚治疗。我们将由此产生的方法应用于两个具有挑战性和新颖的应用:霍克斯进程和长期短期内存(LSTM)神经网络。在这两种情况下,我们成功地展示了我们的方法对真实数据的有效性。