Visual segmentation seeks to partition images, video frames, or point clouds into multiple segments or groups. This technique has numerous real-world applications, such as autonomous driving, image editing, robot sensing, and medical analysis. Over the past decade, deep learning-based methods have made remarkable strides in this area. Recently, transformers, a type of neural network based on self-attention originally designed for natural language processing, have considerably surpassed previous convolutional or recurrent approaches in various vision processing tasks. Specifically, vision transformers offer robust, unified, and even simpler solutions for various segmentation tasks. This survey provides a thorough overview of transformer-based visual segmentation, summarizing recent advancements. We first review the background, encompassing problem definitions, datasets, and prior convolutional methods. Next, we summarize a meta-architecture that unifies all recent transformer-based approaches. Based on this meta-architecture, we examine various method designs, including modifications to the meta-architecture and associated applications. We also present several closely related settings, including 3D point cloud segmentation, foundation model tuning, domain-aware segmentation, efficient segmentation, and medical segmentation. Additionally, we compile and re-evaluate the reviewed methods on several well-established datasets. Finally, we identify open challenges in this field and propose directions for future research. The project page can be found at https://github.com/lxtGH/Awesome-Segmenation-With-Transformer. We will also continually monitor developments in this rapidly evolving field.


翻译:视觉分割旨在将图像、视频帧或点云分成多个部分或组。这种技术具有许多实际应用,如自动驾驶、图像编辑、机器人感知和医学分析。在过去的十年中,基于深度学习的方法在这个领域取得了显著的进展。最近,Transformer,一种基于自注视的神经网络,最初是为了自然语言处理而设计的,已经在各种视觉处理任务中大大超越了以往的卷积或循环方法。具体而言,视觉 Transformer 为各种分割任务提供了强大、统一甚至更简单的解决方案。本综述全面概述了基于 Transformer 的视觉分割,总结了最近的进展。首先,我们回顾了背景,包括问题定义、数据集和先前的卷积方法。接下来,我们总结了一个元架构,将所有最新的基于 Transformer 的方法统一起来。基于这个元架构,我们研究了各种方法设计,包括对元架构的修改和相关应用。我们还介绍了几个紧密相关的设置,包括 3D 点云分割、基础模型调整、领域感知分割、高效分割和医学分割。此外,我们在几个已建立的数据集上编译和重新评估了评估方法。最后,我们确定了这个领域的开放性挑战,并提出了未来研究的方向。该项目页面可以在 https://github.com/lxtGH/Awesome-Segmenation-With-Transformer 上找到。我们还将持续监控这个快速发展的领域的发展。

4
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【文献综述】图像分割综述,224篇参考文献,附58页PDF
专知会员服务
121+阅读 · 2019年6月16日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
19+阅读 · 2020年12月23日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【文献综述】图像分割综述,224篇参考文献,附58页PDF
专知会员服务
121+阅读 · 2019年6月16日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关论文
Arxiv
0+阅读 · 2023年6月2日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
19+阅读 · 2020年12月23日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员