We study quantum soft covering and privacy amplification against quantum side information. The former task aims to approximate a quantum state by sampling from a prior distribution and querying a quantum channel. The latter task aims to extract uniform and independent randomness against quantum adversaries. For both tasks, we use trace distance to measure the closeness between the processed state and the ideal target state. We show that the minimal amount of samples for achieving an $\varepsilon$-covering is given by the $(1-\varepsilon)$-hypothesis testing information (with additional logarithmic additive terms), while the maximal extractable randomness for an $\varepsilon$-secret extractor is characterized by the conditional $(1-\varepsilon)$-hypothesis testing entropy. When performing independent and identical repetitions of the tasks, our one-shot characterizations lead to tight asymptotic expansions of the above-mentioned operational quantities. We establish their second-order rates given by the quantum mutual information variance and the quantum conditional information variance, respectively. Moreover, our results extend to the moderate deviation regime, which are the optimal asymptotic rates when the trace distances vanish at sub-exponential speed. Our proof technique is direct analysis of trace distance without smoothing.
翻译:我们根据量子侧信息研究量子软覆盖和隐私放大。 前一项任务的目的是通过从先前的分布和查询量子频道取样来估计量子状态。 后一项任务旨在提取对量子对手的统一和独立的随机性。 对于这两项任务, 我们使用微量距离来测量加工状态和理想目标状态之间的近距离。 我们显示, 实现1美元( varepsilon) 覆盖的最小样本量是由上述操作量的( 1-\ varepsilon) $- 合制测试信息提供的( 附加对数添加添加条件), 而对于 $\ valepslon- secretarial 抽取器的最大可抽取随机性特征是有条件的 $(1\ varepslon) $- ypothesismessy 测试。 当进行独立和相同的重复任务时, 我们的一发式描述导致上述操作量的微缩缩缩放扩张。 我们根据量相互信息差异和量定数信息差异分别确定它们的第二等级比例。 此外, 我们的结果是平偏差法,, 直径分析是最慢的平距。