Edge caching can significantly improve the 5G networks' performance both in terms of delay and backhaul traffic. We use a reinforcement learning-based (RL-based) caching technique that can adapt to time-location-dependent popularity patterns for on-demand video contents. In a private 5G, we implement the proposed caching scheme as two virtual network functions (VNFs), edge and remote servers, and measure the cache hit ratio as a KPI. Combined with the HLS protocol, the proposed video-on-demand (VoD) streaming is a reliable and scalable service that can adapt to content popularity.
翻译:边缘缓存可以大大改善5G网络在延迟和回航流量方面的性能。 我们使用强化学习(基于RL)缓存技术,可以适应按需视频内容取决于时间定位的流行模式。 在私人5G中,我们将拟议的缓存计划作为两个虚拟网络功能(VNFs)、边端和远程服务器实施,并将缓存点击率作为KPI进行测量。 与HLS协议相结合,拟议的按需视频流是一种可靠且可扩展的服务,可以适应内容受欢迎程度。