Data dependencies have been extended to graphs to characterize topological and value constraints. Existing data dependencies are defined to capture inconsistencies in static graphs. Nevertheless, inconsistencies may occur over evolving graphs and only for certain time periods. The need for capturing such inconsistencies in temporal graphs is evident in anomaly detection and predictive dynamic network analysis. This paper introduces a class of data dependencies called Temporal Graph Functional Dependencies (TGFDs). TGFDs generalize functional dependencies to temporal graphs as a sequence of graph snapshots that are induced by time intervals, and enforce both topological constraints and attribute value dependencies that must be satisfied by these snapshots. (1) We establish the complexity results for the satisfiability and implication problems of TGFDs. (2) We propose a sound and complete axiomatization system for TGFDs. (3) We also present efficient parallel algorithms to detect inconsistencies in temporal graphs as violations of TGFDs. The algorithm exploits data and temporal locality induced by time intervals, and uses incremental pattern matching and load balancing strategies to enable feasible error detection in large temporal graphs. Using real datasets, we experimentally verify that our algorithms achieve lower runtimes compared to existing baselines, while improving the accuracy over error detection using existing graph data constraints, e.g., GFDs and GTARs with 55% and 74% gain in F1-score, respectively.
翻译:数据依赖性已扩大到图表,以说明地形和价值限制的特征; 现有的数据依赖性被界定,以捕取静态图表中的不一致之处; 然而,在变化中的图表中可能出现不一致,而且只在一定的一段时间内出现不一致; 在异常探测和预测动态网络分析中,明显需要在时间图表中捕捉这种不一致之处; 本文介绍了一组数据依赖性的数据依赖性,称为Temoral 图形的功能依赖性,以描述表层和价值限制的特征限制和价值限制的特征; 将现有数据依赖性一般地扩大到图表,以时间间隔为诱导的图时图片截图,并强制执行表性限制和属性依赖性值的不一致性,而这必须由这些快照所满足。 (1) 我们为TGGGFD的可变性和隐性问题和隐含问题确定复杂的结果。 (2) 我们为TGGFFD提出一个健全和完整的分解系统。 (3) 我们还提供高效率的平行算法,以发现违反TGFFD的时针和时间间隔所利用数据和时间差点,并使用渐进模式对战略进行匹配和加平衡战略,以便能够在大型时段内进行可行的测算,同时,用GFLFL,同时进行真正的调查,同时进行实地调查,并进行实地 ; ; 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 正在 的 正在 的 的 的 的 正在 正在 的 的 的 正在 的 的 的 的 的 的 的 的 的 的 正在 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 正在 的 的 的 正在 的 的 正在 正在 正在 的 正在 的 的 的 的 的 正在 正在 的 正在 正在 的 的 的 的 的 的 的 的 的 的