Objectives. The aim of this study was to investigate whether a deep convolutional neural network (CNN) with an attention module can detect osteoporosis on panoramic radiographs. Study Design. A dataset of 70 panoramic radiographs (PRs) from 70 different subjects of age between 49 to 60 was used, including 49 subjects with osteoporosis and 21 normal subjects. We utilized the leave-one-out cross-validation approach to generate 70 training and test splits. Specifically, for each split, one image was used for testing and the remaining 69 images were used for training. A deep convolutional neural network (CNN) using the Siamese architecture was implemented through a fine-tuning process to classify an PR image using patches extracted from eight representative trabecula bone areas (Figure 1). In order to automatically learn the importance of different PR patches, an attention module was integrated into the deep CNN. Three metrics, including osteoporosis accuracy (OPA), non-osteoporosis accuracy (NOPA) and overall accuracy (OA), were utilized for performance evaluation. Results. The proposed baseline CNN approach achieved the OPA, NOPA and OA scores of 0.667, 0.878 and 0.814, respectively. With the help of the attention module, the OPA, NOPA and OA scores were further improved to 0.714, 0.939 and 0.871, respectively. Conclusions. The proposed method obtained promising results using deep CNN with an attention module, which might be applied to osteoporosis prescreening.


翻译:这项研究的目的是调查一个具有关注模块的深层神经神经网络(CNN)能否探测全成放射线上的骨质疏松;研究设计:使用了70个49至60岁不同科目的70个全成射线谱数据集,其中包括49个有骨质疏松症和21个正常科目的49个科目;我们利用一个放假的交叉验证方法来生成70个培训和测试分解;具体地说,每个分解使用一个图像进行测试,其余的69个图像用于培训;一个使用暹米结构的深度神经网络(CNN),通过一个微调过程,利用从8个有代表性的白质骨质区提取的补丁对PR图像进行分类(图1)。 为了自动了解不同的PR补丁的重要性,一个关注模块被纳入了深入的CNNNC。 三种衡量尺度,包括骨质疏松结的精度(OPA),非骨质疏松动准确度(NOPA),以及使用SALA总体精度(OA),分别使用了拟议的OA基线和OLISA结果。

0
下载
关闭预览

相关内容

在深度学习中,卷积神经网络(CNN或ConvNet)是一类深度神经网络,最常用于分析视觉图像。基于它们的共享权重架构和平移不变性特征,它们也被称为位移不变或空间不变的人工神经网络(SIANN)。它们在图像和视频识别,推荐系统,图像分类,医学图像分析,自然语言处理,和财务时间序列中都有应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
32+阅读 · 2021年6月12日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
83+阅读 · 2020年6月21日
最新《医学图像深度语义分割》综述论文
专知会员服务
96+阅读 · 2020年6月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
0+阅读 · 2021年12月13日
Attention Network Robustification for Person ReID
Arxiv
5+阅读 · 2019年10月15日
Arxiv
6+阅读 · 2019年4月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员