This work investigates a system where each user aims to retrieve a scalar linear function of the files of a library, which are Maximum Distance Separable coded and stored at multiple distributed servers. The system needs to guarantee robust decoding in the sense that each user must decode its demanded function with signals received from any subset of servers whose cardinality exceeds a threshold. In addition, (a) the content of the library must be kept secure from a wiretapper who obtains all the signals from the servers;(b) any subset of users together can not obtain any information about the demands of the remaining users; and (c) the users' demands must be kept private against all the servers even if they collude. Achievable schemes are derived by modifying existing Placement Delivery Array (PDA) constructions, originally proposed for single-server single-file retrieval coded caching systems without any privacy or security or robustness constraints. It is shown that the PDAs describing the original Maddah-Ali and Niesen's coded caching scheme result in a load-memory tradeoff that is optimal to within a constant multiplicative gap, except for the small memory regime when the number of file is smaller than the number of users. As by-products, improved order optimality results are derived for three less restrictive systems in all parameter regimes.
翻译:这项工作调查了一个系统, 每个用户都希望从图书馆的文档中检索一个卡路里线性功能, 即最大距离代码编码, 并存储在多个分布式服务器上。 系统需要保证强大的解码功能, 即每个用户必须用从任何组服务器收到的信号来解码其要求的功能, 这些服务器的基点超过阈值。 此外, (a) 图书馆的内容必须来自从从服务器获取所有信号的窃听器;(b) 任何组用户无法一起获得关于剩余用户需求的任何信息;(c) 用户的需求必须对所有服务器保持保密, 即使它们相互串通。 可以通过修改现有的定位交付Array( PDA) 结构来制定可实现的方案, 最初是为单一服务器的单页检索码缓存系统设计的, 没有任何隐私、 安全性或坚固性限制。 事实证明, 描述原始Madah- Ali 和Niesen 编码缓存系统的PDADA 方案导致一个载式交易计划, 即便它们相互配合, 最优于一个不变的多式系统, 最优的系统, 最优于最优的系统, 最优的系统在最优的公式中, 最优为最优的系统, 最优于最优为最优的三的系统, 最优的系统, 最优的 最优的为最优为最优的 最优的为最优的系统。