We consider the problem of finding the best memoryless stochastic policy for an infinite-horizon partially observable Markov decision process (POMDP) with finite state and action spaces with respect to either the discounted or mean reward criterion. We show that the (discounted) state-action frequencies and the expected cumulative reward are rational functions of the policy, whereby the degree is determined by the degree of partial observability. We then describe the optimization problem as a linear optimization problem in the space of feasible state-action frequencies subject to polynomial constraints that we characterize explicitly. This allows us to address the combinatorial and geometric complexity of the optimization problem using recent tools from polynomial optimization. In particular, we demonstrate how the partial observability constraints can lead to multiple smooth and non-smooth local optimizers and we estimate the number of critical points.


翻译:我们考虑了如何找到最佳无记忆的随机政策,以建立一个具有有限状态和行动空间的无限视点部分可观测的Markov决策过程(POMDP),在折扣标准或平均奖励标准方面有一定的状态和行动空间。我们表明,(折扣的)州行动频率和预期累积奖励是该政策的合理功能,其程度取决于部分可观察的程度。我们然后将优化问题描述为在受到我们明确描述的多元制约的情况下可行的州行动频率空间的线性优化问题。这使我们能够利用最近多面优化的工具解决优化问题的组合和几何复杂问题。我们尤其展示了部分可观察性制约因素如何导致多重平稳和非湿润的地方优化,我们估计了临界点的数量。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员