Federated learning is used for decentralized training of machine learning models on a large number (millions) of edge mobile devices. It is challenging because mobile devices often have limited communication bandwidth and local computation resources. Therefore, improving the efficiency of federated learning is critical for scalability and usability. In this paper, we propose to leverage partially trainable neural networks, which freeze a portion of the model parameters during the entire training process, to reduce the communication cost with little implications on model performance. Through extensive experiments, we empirically show that Federated learning of Partially Trainable neural networks (FedPT) can result in superior communication-accuracy trade-offs, with up to $46\times$ reduction in communication cost, at a small accuracy cost. Our approach also enables faster training, with a smaller memory footprint, and better utility for strong differential privacy guarantees. The proposed FedPT method can be particularly interesting for pushing the limitations of overparameterization in on-device learning.


翻译:联邦学习用于对大量(百万)边缘移动设备进行机器学习模型的分散化培训,具有挑战性,因为移动设备往往具有有限的通信带宽和本地计算资源。因此,提高联合学习的效率对于可扩缩和可用性至关重要。在本文中,我们提议利用部分可训练的神经网络,在整个培训过程中冻结部分模型参数,以减少通信成本,对模型性能影响不大。通过广泛的实验,我们从经验上表明,联邦学习部分可训练神经网络(FedPT)可以带来较高的通信准确性交易,通信成本降低46美元,成本小一些。我们的方法还有助于更快的培训,减少记忆足迹,并为差异很大的隐私保障提供更好的效用。 拟议的FedPT方法对于在设计性学习中推动超分计的限制可能特别有趣。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年6月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Federated Two-stage Learning with Sign-based Voting
Arxiv
0+阅读 · 2021年12月10日
Arxiv
10+阅读 · 2021年3月30日
Federated Learning with Personalization Layers
Arxiv
4+阅读 · 2019年12月2日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年6月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员