Quantiles, such as the median or percentiles, provide concise and useful information about the distribution of a collection of items, drawn from a linearly ordered universe. We study data structures, called quantile summaries, which keep track of all quantiles, up to an error of at most $\varepsilon$. That is, an $\varepsilon$-approximate quantile summary first processes a stream of items and then, given any quantile query $0\le \phi\le 1$, returns an item from the stream, which is a $\phi'$-quantile for some $\phi' = \phi \pm \varepsilon$. We focus on comparison-based quantile summaries that can only compare two items and are otherwise completely oblivious of the universe. The best such deterministic quantile summary to date, by Greenwald and Khanna (ACM SIGMOD '01), stores at most $O(\frac{1}{\varepsilon}\cdot \log \varepsilon N)$ items, where $N$ is the number of items in the stream. We prove that this space bound is optimal by providing a matching lower bound. Our result thus rules out the possibility of constructing a deterministic comparison-based quantile summary in space $f(\varepsilon)\cdot o(\log N)$, for any function $f$ that does not depend on $N$. A consequence of our results is also to show a lower bound for randomized algorithms.


翻译:中位数或百分位数等量, 提供关于从线性订购的宇宙中提取的物品集分布的简明和有用信息。 我们研究数据结构, 叫做 量数摘要, 跟踪所有量, 直至一个错误, 最多$\ varepsilon$。 也就是说, $\ varepsilon$- 近似四分量摘要首先处理一个项目流, 然后根据任何量性查询 $0\le\ file 1 美元, 返回流中的一个可靠项目, 即 $\\\ fu' $- quantile 用于某些 $\\\ phi\ pm\ varepsilon$。 我们关注基于比较的量摘要, 只能比较两个项目, 否则完全忽略宇宙。 最好的确定性孔数摘要, 由Greenwald 和 Khanna (ACM SIGMDOD) 以最高值存储, $( {\\\\\ varep $ qual $_ dolfrational) a rudeal rudeal rudeal ex ex a rode rodeal sublex rudeal ex ex ex exual ex the we pres pres pres presualut rublegelpalut ex a rublemental $ Ns) ex expalus a rublement a.

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
已删除
AI科技评论
4+阅读 · 2018年8月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
136+阅读 · 2018年10月8日
Arxiv
4+阅读 · 2018年3月1日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
已删除
AI科技评论
4+阅读 · 2018年8月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员