Due to the expensive data collection process, micro-expression datasets are generally much smaller in scale than those in other computer vision fields, rendering large-scale training less stable and feasible. In this paper, we aim to develop a protocol to automatically synthesize micro-expression training data that 1) are on a large scale and 2) allow us to train recognition models with strong accuracy on real-world test sets. Specifically, we discover three types of Action Units (AUs) that can well constitute trainable micro-expressions. These AUs come from real-world micro-expressions, early frames of macro-expressions, and the relationship between AUs and expression labels defined by human knowledge. With these AUs, our protocol then employs large numbers of face images with various identities and an existing face generation method for micro-expression synthesis. Micro-expression recognition models are trained on the generated micro-expression datasets and evaluated on real-world test sets, where very competitive and stable performance is obtained. The experimental results not only validate the effectiveness of these AUs and our dataset synthesis protocol but also reveal some critical properties of micro-expressions: they generalize across faces, are close to early-stage macro-expressions, and can be manually defined.


翻译:由于数据收集过程费用昂贵,微表层数据集的规模一般大大小于其他计算机视觉领域,使大规模培训不那么稳定和可行。在本文件中,我们的目标是制定一项协议,自动合成微表层培训数据,其中(1) 规模大,(2) 使我们能够在真实世界测试组中以高度精确的方式培训识别模型。具体地说,我们发现三种类型的行动单位(AUS)完全可以构成可培训的微观表现。这些AU来自真实世界的微观表现、宏观表达的早期框架,以及AUs与人类知识定义的表达标志之间的关系。有了这些AU,我们的协议然后使用大量具有不同身份的面部图像和现有的微表层合成面部生成方法。微表层识别模型在生成的微表层数据集方面得到了培训,并在真实世界测试组中进行了评估,这些测试非常具有竞争力和稳定性的性能。实验结果不仅验证了这些AUs和我们数据集综合协议的有效性,而且还揭示了某些关键特征:它们能够将手动的宏观面进行到早期分析。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
专知会员服务
43+阅读 · 2021年6月25日
专知会员服务
128+阅读 · 2021年6月18日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Arxiv
6+阅读 · 2020年2月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Top
微信扫码咨询专知VIP会员