Several prior works have proposed various methods for the task of automatic melody harmonization, in which a model aims to generate a sequence of chords to serve as the harmonic accompaniment of a given multiple-bar melody sequence. In this paper, we present a comparative study evaluating and comparing the performance of a set of canonical approaches to this task, including a template matching based model, a hidden Markov based model, a genetic algorithm based model, and two deep learning based models. The evaluation is conducted on a dataset of 9,226 melody/chord pairs we newly collect for this study, considering up to 48 triad chords, using a standardized training/test split. We report the result of an objective evaluation using six different metrics and a subjective study with 202 participants.
翻译:先前的若干著作提出了自动旋律协调任务的各种方法,其中模型旨在产生一系列和弦,作为某一多条旋律序列的和谐伴奏。在本文件中,我们提交了一份比较研究,评估和比较了用于这项任务的一套圆柱形方法的性能,包括一个基于模板的匹配模型、一个基于Markov的隐藏模型、一个基于遗传算法的模型和两个基于深层次学习的模型。评价以我们新为这项研究收集的9 226对旋律/和弦的数据集进行,其中考虑到多达48对三角和弦,使用标准化的培训/测试分解。我们用6种不同的指标和202名参与者的主观研究结果报告客观评价的结果。