The quadratic Wasserstein metric has shown its power in measuring the difference between probability densities, which benefits optimization objective function with better convexity and is insensitive to data noise. Nevertheless, it is always an important question to make the seismic signals suitable for comparison using the quadratic Wasserstein metric. The squaring scaling is worth exploring since it guarantees the convexity caused by data shift. However, as mentioned in [Commun. Inf. Syst., 2019, 19:95-145], the squaring scaling may lose uniqueness and result in more local minima to the misfit function. In our previous work [J. Comput. Phys., 2018, 373:188-209], the quadratic Wasserstein metric with squaring scaling was successfully applied to the earthquake location problem. But it only discussed the inverse problem with few degrees of freedom. In this work, we will present a more in-depth study on the combination of squaring scaling technique and the quadratic Wasserstein metric. By discarding some inapplicable data, picking seismic phases, and developing a new normalization method, we successfully invert the seismic velocity structure based on the squaring scaling technique and the quadratic Wasserstein metric. The numerical experiments suggest that this newly proposed method is an efficient approach to obtain more accurate inversion results.


翻译:夸度瓦塞斯坦测量仪显示了测量概率密度差异的力量,这种概率密度有利于优化目标功能,而且对数据噪音不敏感。然而,让地震信号适合使用夸度瓦塞斯坦测量仪进行比较,总是一个重要问题。夸度比例值值得探索,因为它保证了数据变化造成的共性。然而,如[Commun.Inf.Syst., 2019, 19:95-145]所述,比例缩放可能会失去独特性,导致更多的本地迷你功能。在我们以往的工作中[J.Comput. Phys., 2018, 373:18:209],使地震信号适合使用夸度瓦塞斯坦测量仪与夸度测量仪成功地应用于地震位置问题。但是,它只是用很少的自由度来讨论反向问题。在这项工作中,我们将更深入地研究如何将缩放技术与夸度瓦塞斯坦测量仪相结合,通过丢弃某些可比较的数据,选择地震阶段,37:188-209],用夸度度度测量度度度度度度度度测量度测量度度度度度度测量测量测量测量测量方法成功地测量了新的标准,我们建议的平流平流度标准,以获得新的平流度标准。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员