Self-attention mechanism recently achieves impressive advancement in Natural Language Processing (NLP) and Image Processing domains. And its permutation invariance property makes it ideally suitable for point cloud processing. Inspired by this remarkable success, we propose an end-to-end architecture, dubbed Cross-Level Cross-Scale Cross-Attention Network (CLCSCANet), for point cloud representation learning. First, a point-wise feature pyramid module is introduced to hierarchically extract features from different scales or resolutions. Then a cross-level cross-attention is designed to model long-range inter-level and intra-level dependencies. Finally, we develop a cross-scale cross-attention module to capture interactions between-and-within scales for representation enhancement. Compared with state-of-the-art approaches, our network can obtain competitive performance on challenging 3D object classification, point cloud segmentation tasks via comprehensive experimental evaluation.
翻译:自留机制最近在自然语言处理(NLP)和图像处理领域取得了令人印象深刻的进步。 其差异性属性使得它最适宜用于点云处理。 受这一显著成功启发,我们提议了一个端对端结构,称为跨层次跨范围跨关注网络(CLCCCANet),用于点云代表学习。 首先,一个点对点功能金字塔模块引入了不同尺度或分辨率的分级提取功能。 然后,设计了一个跨层次交叉关注模块,用于模拟长距离跨层次和内部依赖关系。 最后,我们开发了一个跨层次跨关注模块,以捕捉用于加强代表比例的跨尺度和内部互动。与最先进的方法相比,我们的网络可以在挑战性的3D对象分类、点云分化任务上通过综合实验评估获得竞争业绩。