Self-attention mechanism recently achieves impressive advancement in Natural Language Processing (NLP) and Image Processing domains. And its permutation invariance property makes it ideally suitable for point cloud processing. Inspired by this remarkable success, we propose an end-to-end architecture, dubbed Cross-Level Cross-Scale Cross-Attention Network (CLCSCANet), for point cloud representation learning. First, a point-wise feature pyramid module is introduced to hierarchically extract features from different scales or resolutions. Then a cross-level cross-attention is designed to model long-range inter-level and intra-level dependencies. Finally, we develop a cross-scale cross-attention module to capture interactions between-and-within scales for representation enhancement. Compared with state-of-the-art approaches, our network can obtain competitive performance on challenging 3D object classification, point cloud segmentation tasks via comprehensive experimental evaluation.


翻译:自留机制最近在自然语言处理(NLP)和图像处理领域取得了令人印象深刻的进步。 其差异性属性使得它最适宜用于点云处理。 受这一显著成功启发,我们提议了一个端对端结构,称为跨层次跨范围跨关注网络(CLCCCANet),用于点云代表学习。 首先,一个点对点功能金字塔模块引入了不同尺度或分辨率的分级提取功能。 然后,设计了一个跨层次交叉关注模块,用于模拟长距离跨层次和内部依赖关系。 最后,我们开发了一个跨层次跨关注模块,以捕捉用于加强代表比例的跨尺度和内部互动。与最先进的方法相比,我们的网络可以在挑战性的3D对象分类、点云分化任务上通过综合实验评估获得竞争业绩。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
【NLPCC教程】图神经网络与网络嵌入前沿进展,142页ppt
专知会员服务
72+阅读 · 2020年10月19日
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年6月12日
VIP会员
相关VIP内容
【NLPCC教程】图神经网络与网络嵌入前沿进展,142页ppt
专知会员服务
72+阅读 · 2020年10月19日
相关资讯
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员