Patterns of brain activity are associated with different brain processes and can be used to identify different brain states and make behavioral predictions. However, the relevant features are not readily apparent and accessible. To mine informative latent representations from multichannel EEG recordings, we propose a novel differentiable EEG decoding pipeline consisting of learnable filters and a pre-determined feature extraction module. Specifically, we introduce filters parameterized by generalized Gaussian functions that offer a smooth derivative for stable end-to-end model training and allow for learning interpretable features. For the feature module, we use signal magnitude and functional connectivity. We demonstrate the utility of our model towards emotion recognition from EEG signals on the SEED dataset, as well as on a new EEG dataset of unprecedented size (i.e., 763 subjects), where we identify consistent trends of music perception and related individual differences. The discovered features align with previous neuroscience studies and offer new insights, such as marked differences in the functional connectivity profile between left and right temporal areas during music listening. This agrees with the respective specialisation of the temporal lobes regarding music perception proposed in the literature.
翻译:大脑活动模式与不同的大脑过程相关,可用于识别不同的大脑状态和作出行为预测。然而,相关特征并非显而易见,也不容易获取。为了清除多频道 EEG 记录中的信息性潜质,我们提议了一个新的可区分的 EEG 解码管道,由可学习过滤器和一个预先确定的特征提取模块组成。具体地说,我们引入了通用高斯函数参数的过滤器,为稳定的端到端模型培训提供了光滑衍生物,并允许学习可解释的特征。对于功能模块,我们使用信号大小和功能连接。我们展示了我们模型的效用,以便从EEEG 数据集中的信号中识别情感,以及前所未有的新的EEG数据集(即763个主题)中识别出前所未有的情感。我们发现了音乐感知和相关个人差异的一致趋势。我们发现的特征与以前的神经科学研究相一致,并提供新的洞察力,例如音乐收听期间左侧和右侧时间区域功能连接特征的显著差异。这与文献中提议的关于音乐感知觉觉觉的时间圈的特性的特性不同。