While the major white matter tracts are of great interest to numerous studies in neuroscience and medicine, their manual dissection in larger cohorts from diffusion MRI tractograms is time-consuming, requires expert knowledge and is hard to reproduce. Tract orientation mapping (TOM) is a novel concept that facilitates bundle-specific tractography based on a learned mapping from the original fiber orientation distribution function (fODF) peaks to a list of tract orientation maps (also abbr. TOM). Each TOM represents one of the known tracts with each voxel containing no more than one orientation vector. TOMs can act as a prior or even as direct input for tractography. We use an encoder-decoder fully-convolutional neural network architecture to learn the required mapping. In comparison to previous concepts for the reconstruction of specific bundles, the presented one avoids various cumbersome processing steps like whole brain tractography, atlas registration or clustering. We compare it to four state of the art bundle recognition methods on 20 different bundles in a total of 105 subjects from the Human Connectome Project. Results are anatomically convincing even for difficult tracts, while reaching low angular errors, unprecedented runtimes and top accuracy values (Dice). Our code and our data are openly available.
翻译:虽然主要的白色物质毛片对神经科学和医学方面的许多研究非常感兴趣,但它们在传播MRI成像的较大组群中人工解剖是耗费时间的,需要专家知识,而且很难复制。 Tract方向映射(TOM)是一个新概念,它有助于根据从原始纤维方向分布功能(fODF)峰值中学得的图象绘制包状特定色谱,将其纳入一份绘制方向图(也是 abr. TOM ) 的列表中。 每个TOM 代表已知的每块有不超过一个方向矢量的 voxel 。 TOM 可以作为先前或甚至直接的成像绘图输入。 我们使用一个全导解码- 破坏器全导神经网络架构来学习所需的映射。 与以前用于重建具体捆绑图的概念相比, 它避免了各种繁琐的处理步骤, 如整个脑向映射、 地图注册或组合等。 我们把它与总共105个主题的20个艺术捆绑结方法的4个状态进行了比较。 TOM可以作为绘图的先前或直接输入。 。 。结果可以令人信服地令人信服地说服, 我们的精确度是史前定的, 和直径。