We develop a constructive theory of finite multisets, defining them as free commutative monoids in Homotopy Type Theory. We formalise two algebraic presentations of this construction using 1-HITs, establishing the universal property for each and thereby their equivalence. These presentations correspond to equational theories including a commutation axiom. In this setting, we prove important structural combinatorial properties of singleton multisets arising from concatenations and projections of multisets. This is done in generality, without assuming decidable equality on the carrier set. Further, as applications, we present a constructive formalisation of the relational model of differential linear logic and use it to characterise the equality type of multisets. This leads us to the introduction of a novel conditional equational presentation of the finite-multiset construction.
翻译:我们开发了一种关于有限多位数的建设性理论, 将其定义为在单调类型理论中的自由通货单体。 我们用1- HIT 正式化了两种关于这一构造的代数表达方式, 确立了每个概念的普遍属性, 从而实现了等同 。 这些演示方式与等式理论相对应, 包括折现轴法。 在此背景下, 我们证明单调多位数的结构性组合特性非常重要 。 这是一般性的, 并不假定承载器设定的可变等同性 。 此外, 作为应用, 我们展示了差异线性逻辑关系模型的建设性正规化, 并用它来描述多位数的平等类型 。 这导致我们引入了一种新型的有条件的定数方形构造。