A new Chase-type soft-decision decoding algorithm for Reed-Solomon codes is proposed, referred to as tree-based Chase-type algorithm}. The proposed tree-based Chase-type algorithm takes the set of all vectors as the set of testing patterns, and hence definitely delivers the most-likely codeword provided that the computational resources are allowed. All the testing patterns are arranged in an ordered rooted tree according to the likelihood bounds of the possibly generated codewords, which is an extension of Wu and Pados' method from binary into $q$-ary linear block codes. While performing the algorithm, the ordered rooted tree is constructed progressively by adding at most two leafs at each trial. The ordered tree naturally induces a sufficient condition for the most-likely codeword. That is, whenever the tree-based Chase-type algorithm exits before a preset maximum number of trials is reached, the output codeword must be the most-likely one. But, in fact, the algorithm can be terminated by setting a discrepancy threshold instead of a maximum number of trials. When the tree-based Chase-type algorithm is combined with Guruswami-Sudan (GS) algorithm, each trial can be implement in an extremely simple way by removing from the gradually updated Grobner basis one old point and interpolating one new point. Simulation results show that the tree-based Chase-type algorithm performs better than the recently proposed Chase-type algorithm by Bellorado et al with less trials (on average) given that the maximum number of trials is the same.


翻译:为Reed- Solomon 代码提议了新的大通型软决定解码算法,称为基于树的大通型算法。拟议的大通型算法将所有矢量的一组成像作为一套测试模式,因此绝对提供最有可能的编码词,条件是允许计算资源。所有测试模式都根据可能生成的编码词的可能界限,在有条不紊的树上排列,这是将Wu和Pados的二进制法从二进制扩展为$q美元线性区块码。在进行算法时,定型的根树通过在每次试验中最多增加两个叶子来逐步构建。定型大通算法自然地为最有可能使用的编码模式带来一个充分的条件。这就是,每当基于树的大通算法在达到预设的最大审判次数之前退出一个有条型的树型算法时,产出代码必须是最相似的。但事实上,算法可以通过设定一个差异阈值阈值的阈值阈值阈值阈值,而每个基于树制的大通制的算算算法,一个更简单的Slimal- tral- tral- tral- treval- sal- trevate 的算法,可以逐步地将一个不同的演算法进行一个比一个不同的一个新的的比一个新的的正常算法。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月12日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员