In this paper we establish the non--multiplicity of solutions to first order matrix dynamic equations on time scales. The new results verify and extend the notions developed in \cite{thesis} to more complex systems of $n^2$ matrices with the help of ideas developed in \cite[Chap 5]{BP}, identifying Lipschitz conditions suitable to generalised $n^2$--models on time scales.
翻译:在本文中,我们确定了对时间尺度上第一顺序矩阵动态方程式的非多重解决办法。新的结果核查并扩大了在\cite{thesis}中形成的概念,在\cite[Chap 5]{BP}中形成的想法帮助下,将“cipschitz”中形成的概念推广到更复杂的2美元矩阵系统,确定适合在时间尺度上推广$n_2美元模型的条件。