Guessing Random Additive Noise Decoding (GRAND) is a recently proposed approximate Maximum Likelihood (ML) decoding technique that can decode any linear error-correcting block code. Ordered Reliability Bits GRAND (ORBGRAND) is a powerful variant of GRAND, which outperforms the original GRAND technique by generating error patterns in a specific order. Moreover, their simplicity at the algorithm level renders GRAND family a desirable candidate for applications that demand very high throughput. This work reports the first-ever hardware architecture for ORBGRAND, which achieves an average throughput of up to $42.5$ Gbps for a code length of $128$ at an SNR of $10$ dB. Moreover, the proposed hardware can be used to decode any code provided the length and rate constraints. Compared to the state-of-the-art fast dynamic successive cancellation flip decoder (Fast-DSCF) using a 5G polar $(128,105)$ code, the proposed VLSI implementation has $49\times$ more average throughput while maintaining similar decoding performance.
翻译:随机添加添加噪音解析( GRAND) 是最近提出的一种近似最大隐性解码技术, 它可以解码任何线性错误校正区码。 命令可靠性比特GRAND( ORBGRAND) 是GRAND的一个强大的变体, 它通过生成特定顺序的错误模式, 超过了原GRAND技术。 此外, 在算法层面的简单化使得GRAND家族成为申请非常高的吞吐量的合适人选。 这项工作报告了ORBGRAND有史以来第一个硬件结构, 其代码长度为128美元, 平均的通过量达到42.5 GBPS。 此外, 提议的硬件可以用来解码任何代码, 提供长度和利率限制。 与最先进的快速动态连续取消翻转码( Fast- DSCF) 相比, 使用5G极值( 128, 105) 的代码, 拟议的VLSI 执行过程平均为49美元, 平均通过量为49美元, 同时保持类似的解码性能。