Comparisons of frequency distributions often invoke the concept of shift to describe directional changes in properties such as the mean. In the present study, we sought to define shift as a property in and of itself. Specifically, we define distributional shift (DS) as the concentration of frequencies away from the discrete class having the greatest value (e.g., the right-most bin of a histogram). We derive a measure of DS using the normalized sum of exponentiated cumulative frequencies. We then define relative distributional shift (RDS) as the difference in DS between two distributions, revealing the magnitude and direction by which one distribution is concentrated to lesser or greater discrete classes relative to another. We find that RDS is highly related to popular measures that, while based on the comparison of frequency distributions, do not explicitly consider shift. While RDS provides a useful complement to other comparative measures, DS allows shift to be quantified as a property of individual distributions, similar in concept to a statistical moment.
翻译:暂无翻译