In this paper, we show how the It\^o-stochastic Magnus expansion can be used to efficiently solve stochastic partial differential equations (SPDE) with two space variables numerically. To this end, we will first discretize the SPDE in space only by utilizing finite difference methods and vectorize the resulting equation exploiting its sparsity. As a benchmark, we will apply it to the case of the stochastic Langevin equation with constant coefficients, where an explicit solution is available, and compare the Magnus scheme with the Euler-Maruyama scheme. We will see that the Magnus expansion is superior in terms of both accuracy and especially computational time by using a single GPU and verify it in a variable coefficient case. Notably, we will see speed-ups of order ranging form 20 to 200 compared to the Euler-Maruyama scheme, depending on the accuracy target and the spatial resolution.
翻译:在本文中,我们展示了如何利用Itção-stochacistic Magnus 扩展来有效解决具有两个空间变量的随机部分差异方程式(SPDE) 。 为此,我们将首先通过使用有限差异方法将空间的SPDE分解,然后利用由此产生的方程式的宽度进行矢量化。作为一个基准,我们将将其应用于具有恒定系数的Stochatic Langevin方程式,如果有明确的解决方案,并将Magnus 方案与Euler-Maruyama 方案进行比较。 我们将看到,Magnus 扩展在精确性方面,特别是在计算时间方面,通过使用单一的GPU,并在可变系数案例中进行验证。 值得注意的是,我们将看到,与Euler-Maruyama 方案相比,20至200个序列的快速增长,这取决于准确性目标以及空间分辨率。