Neuroimaging studies often involve the collection of multiple data modalities. These modalities contain both shared and mutually exclusive information about the brain. This work aims at finding a scalable and interpretable method to fuse the information of multiple neuroimaging modalities using a variational autoencoder (VAE). To provide an initial assessment, this work evaluates the representations that are learned using a schizophrenia classification task. A support vector machine trained on the representations achieves an area under the curve for the classifier's receiver operating characteristic (ROC-AUC) of 0.8610.
翻译:神经成像研究往往涉及收集多种数据模式,这些模式包含关于大脑的共享和相互排斥的信息。这项工作旨在寻找一种可扩展和可解释的方法,利用变式自动编码器(VAE)将多种神经成像模式的信息集成起来。为提供初步评估,这项工作评估了使用精神分裂分类任务所学到的表示方式。在演示方面受过培训的支持矢量机在分类接收器操作特性(ROC-AUC)的曲线下达到0.8610的某一区域。