Most modern recommender systems predict users preferences with two components: user and item embedding learning, followed by the user-item interaction modeling. By utilizing the auxiliary review information accompanied with user ratings, many of the existing review-based recommendation models enriched user/item embedding learning ability with historical reviews or better modeled user-item interactions with the help of available user-item target reviews. Though significant progress has been made, we argue that current solutions for review-based recommendation suffer from two drawbacks. First, as review-based recommendation can be naturally formed as a user-item bipartite graph with edge features from corresponding user-item reviews, how to better exploit this unique graph structure for recommendation? Second, while most current models suffer from limited user behaviors, can we exploit the unique self-supervised signals in the review-aware graph to guide two recommendation components better? To this end, in this paper, we propose a novel Review-aware Graph Contrastive Learning (RGCL) framework for review-based recommendation. Specifically, we first construct a review-aware user-item graph with feature-enhanced edges from reviews, where each edge feature is composed of both the user-item rating and the corresponding review semantics. This graph with feature-enhanced edges can help attentively learn each neighbor node weight for user and item representation learning. After that, we design two additional contrastive learning tasks (i.e., Node Discrimination and Edge Discrimination) to provide self-supervised signals for the two components in recommendation process. Finally, extensive experiments over five benchmark datasets demonstrate the superiority of our proposed RGCL compared to the state-of-the-art baselines.
翻译:最现代的推荐人系统预测用户偏好有两个组成部分: 用户和项目嵌入学习,然后是用户项目互动模型。 通过使用辅助性审查信息,加上用户评级,许多现有的基于审查的建议模式丰富了用户/项目嵌入学习能力,包括历史审查或更好的示范性用户项目互动,以及现有的用户项目目标审查。虽然取得了显著进展,但我们认为目前基于审查的建议的解决方案有两个缺点。首先,基于审查的建议可以自然地形成为用户项目双部分图,具有相应用户项目审查的优势,如何更好地利用这一独特的图表结构来提出建议?第二,尽管大多数当前模式存在有限的用户行为,但我们能否利用审查图中独特的自我监督信号,通过历史审查或更好的模拟用户项目互动,更好地指导两个建议组成部分?我们为此,我们提出一个新的基于审查的《审查-觉知图表对比学习》框架(RGLCL) 用于基于审查的建议。具体地说,我们首先建立一个具有专题强化度的浏览用户项目的用户项目对比图,然后用每个边端的自我评估模型来显示我们每个用户升级的模型的进度, 学习的进度分析。