Finite element analysis of solid mechanics is a foundational tool of modern engineering, with low-order finite element methods and assembled sparse matrices representing the industry standard for implicit analysis. We use performance models and numerical experiments to demonstrate that high-order methods greatly reduce the costs to reach engineering tolerances while enabling effective use of GPUs; these data structures also offer up to 2x benefit for linear elements. We demonstrate the reliability, efficiency, and scalability of matrix-free $p$-multigrid methods with algebraic multigrid coarse solvers through large deformation hyperelastic simulations of multiscale structures. We investigate accuracy, cost, and execution time on multi-node CPU and GPU systems for moderate to large models (millions to billions of degrees of freedom) using AMD MI250X (OLCF Crusher), NVIDIA A100 (NERSC Perlmutter), and V100 (LLNL Lassen and OLCF Summit), resulting in order of magnitude efficiency improvements over a broad range of model properties and scales. We discuss efficient matrix-free representation of Jacobians and demonstrate how automatic differentiation enables rapid development of nonlinear material models without impacting debuggability and workflows targeting GPUs. The methods are broadly applicable and amenable to common workflows, presented here via open source libraries that encapsulate all GPU-specific aspects and are accessible to both new and legacy code, allowing application code to be GPU-oblivious without compromising end-to-end performance on GPUs.
翻译:固态机械的精度要素分析是现代工程的基本工具,采用低序限定元素方法和代表行业隐性分析标准的组装分散矩阵,我们使用性能模型和数字实验来证明,高序方法大大降低了工程容度的成本,同时使得能够有效使用GPU;这些数据结构也为线性元素提供了高达2x的好处;我们通过大规模超规模结构变形超弹性模拟,展示了无基数多格多电磁共振分解解解解解溶液的无基数方法的可靠性、效率和可缩放性;我们利用AMD MI250X(百万至数十亿度自由度)、NVIDIA A100(NERSC Perlmutter)和V100(LLNLL Lassen和OLCF峰会),通过大量可理解的模型特性和规模,我们讨论了多级结构的高效无底基代表性,并展示了多级CPU和GPU系统系统系统的精确性、自动差异如何使中大至大型模型(百万度自由度)模型(百万至数十度模型的快速发展G-可应用的GSBLS-CRBS-SBSBS-S-S-S-S-S-S-S-S-S-S-CLUD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S